首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2706篇
  免费   445篇
  国内免费   459篇
化学   1579篇
晶体学   69篇
力学   356篇
综合类   9篇
数学   383篇
物理学   1214篇
  2024年   8篇
  2023年   112篇
  2022年   147篇
  2021年   150篇
  2020年   170篇
  2019年   143篇
  2018年   156篇
  2017年   148篇
  2016年   202篇
  2015年   221篇
  2014年   217篇
  2013年   248篇
  2012年   251篇
  2011年   220篇
  2010年   185篇
  2009年   179篇
  2008年   128篇
  2007年   147篇
  2006年   150篇
  2005年   94篇
  2004年   37篇
  2003年   60篇
  2002年   43篇
  2001年   60篇
  2000年   26篇
  1999年   41篇
  1998年   38篇
  1997年   21篇
  1994年   1篇
  1993年   1篇
  1988年   2篇
  1987年   1篇
  1980年   1篇
  1979年   1篇
  1957年   1篇
排序方式: 共有3610条查询结果,搜索用时 31 毫秒
41.
Metal organic frameworks (MOFs) derived carbonaceous materials have a wide range of applications in the fields of energy storage, catalysis, adsorption and separation, etc. Especially, zeolitic imidazolate framework-8 (ZIF-8) is an excellent candidate to synthesize porous carbon due to the large surface area and high nitrogen content. However, the dominated microporous structure of ZIF-8-derived carbon significantly hinders ionic mass transfer, limiting the improvement of performance. Herein, MOF-derived mesoporous carbon was prepared using ZIF-8 as carbon precursor and cheap sodium silicate (Na2SiO3) as activator. The introduction of Na2SiO3 created rich mesoporous structure and increased specific surface area, as well as the effects of pyrolysis temperature and Na2SiO3 dosage on performance was also investigated. The obtained ZIF-derived porous carbon exhibits good electrochemical performance with specific capacitance of 263 F/g at 1 A/g and excellent cycle life (96.07% after 10,000 GCD cycles) in supercapacitor. The use of cheap Na2SiO3 activator provides a new orientation for the preparation of MOF-derived carbons with rich pores, high surface area, and facilitates the large-scale application of MOF-derived carbons.  相似文献   
42.
Cardiovascular diseases have been the leading cause of morbidity and mortality in the world recently. With the growing aging population accompanied by chronic diseases, such as uremia and diabetes, there is an increasing clinical demand for vascular grafts with proper performance. Although some achievements have been made in the development of tissue-engineered vascular grafts composed of natural and synthetic polymeric materials or decellularized vessels, clinical applications with a diameter of less than 6 mm are still principally derived from autografts, such as autologous saphenous veins. Many challenges remain in anti-thrombosis, rapid endothelialization, modulating the inflammatory response and inhibition of intimal hyperplasia and calcification. In the review, recent progress in the electrospinning of biodegradable polymers for vascular regeneration are summarized, especially from the view of biomechanical factors. Hybrid vascular grafts consisting of natural and synthetic polymers with multicomponent, di-or tri-layers are focused in order to provide novel experiences in biomaterials for applications in this field.  相似文献   
43.
An easy and delicate approach using cheap carbon source as conductive materials to construct 3D sequential porous structural Na3V2(PO4)3/C(NVP/C)with high performance for cathode materials of sodium ion battery is highly desired.In this paper,the NVP/C with 3D sequential porous structure is constructed by a delicate approach named as“cooking porridge”including evaporation and calcination stages.Especially,during evaporation,the viscosity of NVP/C precursor is optimized by controlling the adding quantity of citric acid,thus leading to a 3D sequential porous structure with a high specific surface area.Furthermore,the NVP/C with a 3D sequential porous structure enables the electrolyte to interior easily,providing more active sites for redox reaction and shortening the diffusion path of electron and sodium ion.Therefore,benefited from its unique structure,as cathode material of sodium ion batteries,the 3D sequential porous structural NVP/C exhibits high specific capacities(115.7,88.9 and 74.4 mA·h/g at current rates of 1,20 and 50 C,respectively)and excellent cycling stability(107.5 and 80.4 mA·h/g are remained at a current density of 1 C after 500 cycles and at a current density of 20 C after 2200 cycles,respectively).  相似文献   
44.
2D metal-organic framework (MOF) has potential applications in electrocatalysis owing to fast mass transfer, charge transfer and large specific surface area. Here, we had prepared three conductive 2D MOF based on Ni, NiCo and Co in a simple and rapid way. The 2D nanostructure of MOF was confirmed by SEM and TEM. The chemical composition was studied by XRD, Raman and XPS spectrum. The electrochemical oxidation and detection was investigated through cyclic voltammetry and current-time method. Their sensing performance for urea was determined by varying oxidation potentials and metal sites. The non-enzymatic Ni-, NiCo- and Co-MOF sensors had good catalytic activity for urea. Compared with NiCo- and Co-MOF, Ni-MOF had a wider linear range (0.5–832.5 μM), high sensitivity (1960 μA mM−1 cm−2), low detection limit (0.471 μM), and fast response time. The sensors had well repeatability, reproducibility, and selectivity to specific interfering species. Furthermore, Ni- and NiCo-MOF modified electrode was also applied to detection of milk samples. The results showed that the recovery was satisfactory, which further confirmed the effectiveness of non-enzyme sensor. In general, the highly-sensitive 2D Ni- and NiCo-MOF modified electrode has great potential as nonenzymatic urea sensors for real samples detection in hydrogen energy, clinical diagnostics, and environmental protection, et al.  相似文献   
45.
To expand the applications of graphene-based materials to biogas purification, a series of reduced graphene oxide aerogels (rGOAs) were prepared from industrial grade graphene oxide using a simple hydrothermal method. The influences of the hydrothermal preparation temperature on the textural properties, hydrophobicity and physisorption behavior of the rGOAs were investigated using a range of physical and spectroscopic techniques. The results showed that the rGOAs had a macro-porous three-dimensional network structure. Raising the hydrothermal treatment temperature reduced the number of oxygen-containing groups, whereas the specific surface area (SBET), micropore volume (Vmicro) and water contact angle values of the rGOAs all increased. The dynamic adsorption properties of the rGOAs towards hexamethyldisiloxane (L2) increased with increasing hydrothermal treatment temperature and the breakthrough adsorption capacity showed a significant linear association with SBET, Vmicro and contact angle. There was a significant negative association between the breakthrough time and inlet concentration of L2, and the relationship could be reliably predicted with a simple empirical formula. L2 adsorption also increased with decreasing bed temperature. Saturated rGOAs were readily regenerated by a brief heat-treatment at 100 °C. This study has demonstrated the potential of novel rGOA for applications using adsorbents to remove siloxanes from biogas.  相似文献   
46.
N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides and their N-ethyl analogues (flutamides) are versatile scaffolds with a wide spectrum of biological activities. A series of new N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides (8a-t) and their N-ethyl analogous (9a-t) were synthesized and characterized. The inhibitory potential of the synthesized compounds on the viability of three human cancer cell lines HEP3BPN 11 (liver), MDA-MB 453 (breast), and HL 60 (leukemia) were assessed. Among all the compounds 8 L, 8q, 9n and 9p showed higher inhibitory activity on the viability of HL 60 than the standard methotrexate. These lead molecules were then tested for their potential to inhibit the activity of proangiogenic cytokines. The compound 9n showed significantly better inhibition against two cytokines viz. TNFα and Leptin as compared to the standard suramin, while 9p has activity comparable to suramin against IGF1, VEGF, FGFb, and Leptin. The 8q is found to be strong antiangiogenic agent against IGF1, VEGF and TGFβ; while 8 L has showed activity against TNFα, VEGF, and Leptin inhibition. Furthermore antioxidant potential of 8a–t and 9a-t compounds was screened using DPPH, OH and SOR radical scavenging activities. The OH radical scavenging activity of 8c and DPPH activities of 9n as well as 9o are significant as compared to respective standards ascorbic acid and α-tocopherol. The 8c, 9p and 9 h have also exhibited potential antioxidant activity. Additionally, we present in silico molecular docking data to provide the structural rationale of observed TNFα inhibition against newly synthesized compounds. Overall, the synthesized flutamide derivatives have not only anticancer activity, but also possess dual inhibitory effect (anti-angiogenesis and antioxidant) and hence can act as a promising avenue to develop further anticancer agents.  相似文献   
47.
The standard enthalpies of formation of selected ternary half-Heusler type compositions XYZ (X = Au, Co, Fe, Ir, Ni, Pd, Pt, Rh, Ru; Y = Hf, Mn, Ti, Zr; Z = Ga, Sn) were measured using high temperature direct reaction calorimetry. The measured standard enthalpies of formation (in kJ/mole of atoms) of the half-Heusler compounds (prototype MgAgAs, Pearson symbol cF12, space group F-43m) are, IrMnSn (−29.4 ± 1.8); NiTiSn (−52.6 ± 2.4); PtHfSn (−98.8 ± 3.4); PtMnSn (−55.8 ± 2.6); PtTiSn (−93.6 ± 3.3); PtZrSn (−104.9 ± 3.8); for the B2 compound (prototype CsCl, Pearson symbol cP2, space group Pm-3m), RuMnGa (−26.9 ± 1.7); for the C1 structured (prototype CaF2, Pearson symbol cF12, space group Pm-3m) or the C1b structured compound IrMnGa (−40.9 ± 1.7). Indicative standard enthalpies of formation of the following compounds were obtained, half-Heusler compounds AuMnSn, CoTiSn, IrZrSn, NiHfSn, NiZrSn, PdHfSn, PdZrSn, RhTiSn; Heusler compound (prototype Cu2MnAl, Pearson symbol cF16, space group Fm-3m) RhMnSn; hexagonal compound (prototype BeZrSi, Pearson symbol hP6, space group P63/mmc) PtMnGa and another type of hexagonal compound (prototype RhHfSn, Pearson symbol hP18, space group P-62c) RhHfSn, IrZrsn, RhZrSn. Values were compared with ab initio calculations from AFLOW and OQMD. Lattice parameters of these compounds were determined using X-ray diffraction (XRD) analysis. Microstructures were characterized using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Selected alloys were further annealed to investigate phase transformations and phase relationships.  相似文献   
48.
49.
Natural zeolite supported nano TiO2 photocatalysts were prepared by a modified electrostatic self‐assembly (ESA) method. First, γ‐mercaptopropyltrimethoxysilane with sulfhydryl (―SH) functional groups was modified on the zeolite powders by using a ‘dry process’. Second, silane with ―SH functional groups was oxidized to sulfonate (―SO3H) groups by using a hydrogen peroxide/glacial acetic acid mixed solution, and the surface of ―SO3H silane–zeolite was electronegative charged due to the ionization of ―SO3H. Third, the hydrolytic titanium polycation from TiCl4 solution assembled onto the electronegative charged zeolite under electrostatic attraction in the reaction solutions. Finally, zeolite supported nano TiO2 photocatalysts can be obtained after the above compounds calcined at certain temperature. The samples were characterized by X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface areas, Fourier transform infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS) and X‐ray fluorescence (XRF). The photocatalytic activities of the samples were evaluated by the degradation of methyl orange in aqueous solution. The results showed that ESA method effectively improved the composite efficiency of zeolite with TiO2. The photocatalysts prepared by ESA method exhibited higher photocatalytic and recycling activities than that of traditional method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
50.
A new Co(II) metal-organic coordination polymer based on flexible bis(imidazole) and aromatic dicarboxylate co-ligands, namely [Co(bix)(nph)]n(H2nph = 3-nitrophthalic acid, bix = 1,4-bis(imidazole-1-ylmethyl)benzene), has been hydrothermally synthesized and characterized by elemental analyses, TG, IR spectroscopy and single-crystal X-ray diffraction. It crystallizes in the triclinic space group P1 with a = 9.3767(14), b = 10.1451(15), c = 12.1488(17), α = 102.6450(10), β = 108.856(2), γ = 98.807(2)°, V = 1035.3(3)3, Z = 2, C22H17 Co N5O6, Mr = 506.34, Dc = 1.624 g/cm3, μ = 0.882 mm-1 and F(000) = 518. In the complex, the nph2- ligands connect neighbouring cobalt atoms to form binuclear [Co(nph)]2 subunits, which are linked by pairs of bix ligands to form a 2D honeycomb-like(6,3) network. In addition, the compound is further extended into a 3D supramolecular architecture by π···π stacking interactions. Moreover, the luminescence and catalytic properties of the complex are investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号